Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
PLoS One ; 17(12): e0279270, 2022.
Article in English | MEDLINE | ID: covidwho-2197081

ABSTRACT

INTRODUCTION: A subset of individuals with COVID-19 can suffer from a severe form of the disease requiring breathing support for respiratory failure and even death due to disease complications. COVID-19 disease severity can be attributed to numerous factors, where several studies have associated changes in the expression of serum pro-inflammatory cytokines with disease severity. However, very few studies have associated the changes in expression of pro-inflammatory changes in the nasopharyngeal milieu with disease severity. Therefore, in the current study, we performed differential gene expression analysis of various pro-inflammatory cytokines in the nasopharyngeal milieu of mild & severe COVID-19 cases. MATERIAL AND METHOD: For this retrospective, cross-sectional study, a total of 118 nasopharyngeal swab samples, previously collected from mild and severe (based on the WHO criteria) COVID-19 patients were used. A real-time qPCR was performed to determine the viral loads and also evaluate the mRNA expression of eight cytokines (IL-1, IL-2, IL-4, IL-6, IL-10, IFN-γ, TGF-ß1, and TNF-α). Subsequently, an unpaired T-test was applied to compare the statistical difference in mean expression of viral loads and each cytokine between the mild and severe groups, while the Pearson correlation test was applied to establish a correlation between disease severity, viral load, and cytokines expression. Similarly, a multivariable logistic regression analysis was performed to assess the relationship between different variables from the data and disease severity. RESULTS: Out of 118 samples, 71 were mild, while 47 were severe. The mean viral load between the mild and severe groups was comparable (mild group: 27.07± 5.22; severe group: 26.37 ±7.89). The mRNA expression of cytokines IL-2, IL-6, IFN- γ, and TNF-α was significantly different in the two groups (p<0.05), where the Log2 normalized expression of IL-2, IL-6, IFN- γ, and TNF-α was found to be 2.2-, 16-, 2.3-, and 1.73-fold less in the severe group as compared to the mild group. Furthermore, we also observed a significant positive correlation between all the cytokines in the severe group. The multivariate analysis showed a significant relationship between age, IL-6, and disease severity. CONCLUSION: This decreased expression of certain cytokines (IL-2, IL-6, TNF-α, and IFN-γ) in the nasopharyngeal milieu may be considered early biomarkers for disease severity in COVID-19 patients.


Subject(s)
COVID-19 , Cytokines , Humans , Cytokines/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-6 , Interleukin-2/genetics , Retrospective Studies , Cross-Sectional Studies , COVID-19/genetics , Gene Expression , Nasopharynx/metabolism , RNA, Messenger/genetics
2.
Front Biosci (Landmark Ed) ; 27(7): 217, 2022 07 11.
Article in English | MEDLINE | ID: covidwho-1965058

ABSTRACT

BACKGROUND: SARS-CoV-2 is a positive-sense single-stranded RNA virus. It is enveloped by four structural proteins. The entry of the virus into the host cells is mediated by spike protein binding to the angiotensin converting enzyme 2 (ACE2) and proteolytic cleavage by transmembrane protease serine 2 (TMPRSS2). In this study, we analyzed the expression of the ACE2 receptor and TMPRSS2 in cases under investigation for SARS-CoV-2 infection. METHODS: The study was carried out using the viral transport medium of consecutive nasopharyngeal swabs from 300 people under examination for SARS-CoV-2 infection. All samples underwent the SARS-CoV-2 transcriptase-mediated amplification assay (Procleix® SARS-CoV-2) to detect the virus. Immunocytochemistry was used in each sample to detect the presence of the SARS-CoV-2 nucleoprotein, the ACE2 receptor, and TMPRSS2. RESULTS: An immunocytochemical study with monoclonal antibody against SARS-CoV-2 viral nucleoprotein showed positivity in squamous cells. ACE2 were not detected in the squamous cells obtained from the nasopharyngeal samples. CONCLUSIONS: SARS-CoV-2 predominantly localizes to squamous cells in cytology samples of patients with positive transcriptase-mediated amplification SARS-CoV-2 assay results. The immunocytochemical negativity for ACE2 evidenced in the present study could be related to the cellular heterogeneity present in the nasopharyngeal smear samples and could be related to variations at the genomic level. Our results suggest that SARS-CoV-2 might be present in the nasopharyngeal region because viral cell junctions are weaker. This facilitates viral concentration, infective capacity and migration to specific organs, where SARS-CoV-2 infects target cells by binding to their receptors and then entering.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , COVID-19/diagnosis , Humans , Nasopharynx/metabolism , Proteolysis , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
3.
Genes (Basel) ; 13(2)2022 02 14.
Article in English | MEDLINE | ID: covidwho-1686686

ABSTRACT

The use of high-throughput small RNA sequencing is well established as a technique to unveil the miRNAs in various tissues. The miRNA profiles are different between infected and non-infected tissues. We compare the SARS-CoV-2 positive and SARS-CoV-2 negative RNA samples extracted from human nasopharynx tissue samples to show different miRNA profiles. We explored differentially expressed miRNAs in response to SARS-CoV-2 in the RNA extracted from nasopharynx tissues of 10 SARS-CoV-2-positive and 10 SARS-CoV-2-negative patients. miRNAs were identified by small RNA sequencing, and the expression levels of selected miRNAs were validated by real-time RT-PCR. We identified 943 conserved miRNAs, likely generated through posttranscriptional modifications. The identified miRNAs were expressed in both RNA groups, NegS and PosS: miR-148a, miR-21, miR-34c, miR-34b, and miR-342. The most differentially expressed miRNA was miR-21, which is likely closely linked to the presence of SARS-CoV-2 in nasopharynx tissues. Our results contribute to further understanding the role of miRNAs in SARS-CoV-2 pathogenesis, which may be crucial for understanding disease symptom development in humans.


Subject(s)
MicroRNAs/metabolism , Nasopharynx/metabolism , SARS-CoV-2/physiology , COVID-19/pathology , COVID-19/virology , Down-Regulation , High-Throughput Nucleotide Sequencing , Humans , MicroRNAs/chemistry , Nasopharynx/virology , Principal Component Analysis , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , Transcriptome , Up-Regulation
4.
STAR Protoc ; 3(1): 101177, 2022 03 18.
Article in English | MEDLINE | ID: covidwho-1665545

ABSTRACT

With new emerging SARS-CoV-2 strains and their increased pathogenicity, diagnosis has become more challenging. Molecular diagnosis often involves the use of nasopharyngeal swabs and subsequent real-time PCR-based tests. Although this test is the gold standard, it has several limitations; therefore, more complementary assays are required. This protocol describes how to identify SARS-CoV-2 protein from patients' nasopharyngeal swab samples. We first introduce the approach of label-free quantitative proteomics. We then detail target verification by triple quadrupole mass spectrometry (MS)-based targeted proteomics. For complete details on the use and execution of this profile, please refer to Bankar et al. (2021).


Subject(s)
COVID-19/metabolism , Nasopharynx/metabolism , Proteomics , SARS-CoV-2/metabolism , Specimen Handling , Tandem Mass Spectrometry , Viral Proteins/metabolism , Female , Humans , Male , Nasopharynx/virology
6.
Front Immunol ; 12: 733171, 2021.
Article in English | MEDLINE | ID: covidwho-1559118

ABSTRACT

Background: COVID-19, caused by SARS-CoV-2 virus, is a global pandemic with high mortality and morbidity. Limited diagnostic methods hampered the infection control. Since the direct detection of virus mainly by RT-PCR may cause false-negative outcome, host response-dependent testing may serve as a complementary approach for improving COVID-19 diagnosis. Objective: Our study discovered a highly-preserved transcriptional profile of Type I interferon (IFN-I)-dependent genes for COVID-19 complementary diagnosis. Methods: Computational language R-dependent machine learning was adopted for mining highly-conserved transcriptional profile (RNA-sequencing) across heterogeneous samples infected by SARS-CoV-2 and other respiratory infections. The transcriptomics/high-throughput sequencing data were retrieved from NCBI-GEO datasets (GSE32155, GSE147507, GSE150316, GSE162835, GSE163151, GSE171668, GSE182569). Mathematical approaches for homological analysis were as follows: adjusted rand index-related similarity analysis, geometric and multi-dimensional data interpretation, UpsetR, t-distributed Stochastic Neighbor Embedding (t-SNE), and Weighted Gene Co-expression Network Analysis (WGCNA). Besides, Interferome Database was used for predicting the transcriptional factors possessing IFN-I promoter-binding sites to the key IFN-I genes for COVID-19 diagnosis. Results: In this study, we identified a highly-preserved gene module between SARS-CoV-2 infected nasal swab and postmortem lung tissue regulating IFN-I signaling for COVID-19 complementary diagnosis, in which the following 14 IFN-I-stimulated genes are highly-conserved, including BST2, IFIT1, IFIT2, IFIT3, IFITM1, ISG15, MX1, MX2, OAS1, OAS2, OAS3, OASL, RSAD2, and STAT1. The stratified severity of COVID-19 may also be identified by the transcriptional level of these 14 IFN-I genes. Conclusion: Using transcriptional and computational analysis on RNA-seq data retrieved from NCBI-GEO, we identified a highly-preserved 14-gene transcriptional profile regulating IFN-I signaling in nasal swab and postmortem lung tissue infected by SARS-CoV-2. Such a conserved biosignature involved in IFN-I-related host response may be leveraged for COVID-19 diagnosis.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Interferon Type I/metabolism , SARS-CoV-2/isolation & purification , COVID-19/genetics , COVID-19/metabolism , Diagnosis, Differential , Gene Expression Profiling , Gene Regulatory Networks , Humans , Lung/metabolism , Machine Learning , Nasopharynx/metabolism , Respiratory Tract Infections , Severity of Illness Index , Transcriptome
7.
Microbiol Spectr ; 9(3): e0078321, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1501552

ABSTRACT

Lower levels of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) in the nasal epithelium of children may be related to a lower incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, compared to adults. However, no direct evidence is available to support this hypothesis. In this study, we compared the transcript levels of ACE2 and TMPRSS2 in nasopharyngeal swab samples (n = 234) from children and adult family members within SARS-CoV-2-exposed families and assessed the association with SARS-CoV-2 infection status. Transcript levels for ACE2, but not TMPRSS2, were higher in adults than in children (n = 129 adults and 105 children; P < 0.05). The expression of the two genes was not significantly different between SARS-CoV-2 positive and SARS-CoV-2 negative patients within the same age groups. However, in families with one or more SARS-CoV-2 positive adult family members, expression of both genes was significantly higher in SARS-CoV-2 positive children than in SARS-CoV-2 negative children (P < 0.05). By multivariate analysis, ACE2 expression adjusted for age and sex was significantly associated with SARS-CoV-2 infection in the overall population (odds ratio [OR], 1.112 [95% confidence interval [CI], 1.012 to 1.229]; P < 0.05). The degree of this association was higher (OR, 1.172 [95% CI, 1.034 to 1.347]; P < 0.05) in the subgroup of families with only SARS-CoV-2 positive adult family members. Our results suggest that children with lower levels of nasal ACE2 and TMPRSS2 are more likely to remain SARS-CoV-2 negative despite being exposed to a SARS-CoV-2 positive adult family member. IMPORTANCE ACE2 and TMPRSS2 are well established in the literature as SARS-CoV-2 entry factors. Recent data suggest that lower levels of nasal ACE2 in children may be associated with their lower incidence of coronavirus disease 2019 (COVID-19). In this study, using data from nasopharyngeal swab specimens from adult and pediatric members of families in which one or more members of the family had laboratory-confirmed SARS-CoV-2 infection, we show that children with lower levels of ACE2 and TMPRSS2 are more likely to remain SARS-CoV-2 negative despite being exposed to a SARS-CoV-2 positive adult family member. These results provide new insights into the roles of nasopharyngeal ACE2 and TMPRSS2 in acquiring SARS-CoV-2 infection, and they show that the differential expression of these genes in adults versus children may contribute to differential rates of SARS-CoV-2 infection in these populations.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Nasopharynx/metabolism , SARS-CoV-2 , Serine Proteases/metabolism , Adult , Angiotensin-Converting Enzyme 2/genetics , Child , Child, Preschool , Female , Gene Expression , Humans , Infant , Male , Nasopharynx/virology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Specimen Handling
8.
PLoS One ; 16(6): e0253458, 2021.
Article in English | MEDLINE | ID: covidwho-1286869

ABSTRACT

L-Dopa decarboxylase (DDC) is the most significantly co-expressed gene with ACE2, which encodes for the SARS-CoV-2 receptor angiotensin-converting enzyme 2 and the interferon-inducible truncated isoform dACE2. Our group previously showed the importance of DDC in viral infections. We hereby aimed to investigate DDC expression in COVID-19 patients and cultured SARS-CoV-2-infected cells, also in association with ACE2 and dACE2. We concurrently evaluated the expression of the viral infection- and interferon-stimulated gene ISG56 and the immune-modulatory, hypoxia-regulated gene EPO. Viral load and mRNA levels of DDC, ACE2, dACE2, ISG56 and EPO were quantified by RT-qPCR in nasopharyngeal swab samples from COVID-19 patients, showing no or mild symptoms, and from non-infected individuals. Samples from influenza-infected patients were analyzed in comparison. SARS-CoV-2-mediated effects in host gene expression were validated in cultured virus-permissive epithelial cells. We found substantially higher gene expression of DDC in COVID-19 patients (7.6-fold; p = 1.2e-13) but not in influenza-infected ones, compared to non-infected subjects. dACE2 was more elevated (2.9-fold; p = 1.02e-16) than ACE2 (1.7-fold; p = 0.0005) in SARS-CoV-2-infected individuals. ISG56 (2.5-fold; p = 3.01e-6) and EPO (2.6-fold; p = 2.1e-13) were also increased. Detected differences were not attributed to enrichment of specific cell populations in nasopharyngeal tissue. While SARS-CoV-2 virus load was positively associated with ACE2 expression (r≥0.8, p<0.001), it negatively correlated with DDC, dACE2 (r≤-0.7, p<0.001) and EPO (r≤-0.5, p<0.05). Moreover, a statistically significant correlation between DDC and dACE2 expression was observed in nasopharyngeal swab and whole blood samples of both COVID-19 and non-infected individuals (r≥0.7). In VeroE6 cells, SARS-CoV-2 negatively affected DDC, ACE2, dACE2 and EPO mRNA levels, and induced cell death, while ISG56 was enhanced at early hours post-infection. Thus, the regulation of DDC, dACE2 and EPO expression in the SARS-CoV-2-infected nasopharyngeal tissue is possibly related with an orchestrated antiviral response of the infected host as the virus suppresses these genes to favor its propagation.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Dopa Decarboxylase/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Area Under Curve , Aromatic-L-Amino-Acid Decarboxylases , COVID-19/virology , Dopa Decarboxylase/genetics , Down-Regulation , Epithelial Cells/cytology , Epithelial Cells/metabolism , Erythropoietin/genetics , Erythropoietin/metabolism , Female , Humans , Male , Middle Aged , Nasopharynx/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , ROC Curve , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Up-Regulation , Viral Load
9.
Sci Rep ; 11(1): 9658, 2021 05 06.
Article in English | MEDLINE | ID: covidwho-1219902

ABSTRACT

ACE2 and TMPRSS2 are key players on SARS-CoV-2 entry into host cells. However, it is still unclear whether expression levels of these factors could reflect disease severity. Here, a case-control study was conducted with 213 SARS-CoV-2 positive individuals where cases were defined as COVID-19 patients with respiratory distress requiring oxygen support (N = 38) and controls were those with mild to moderate symptoms of the disease who did not need oxygen therapy along the entire clinical course (N = 175). ACE2 and TMPRSS2 mRNA levels were evaluated in nasopharyngeal swab samples by RT-qPCR and logistic regression analyzes were applied to estimate associations with respiratory outcomes. ACE2 and TMPRSS2 levels positively correlated with age, which was also strongly associated with respiratory distress. Increased nasopharyngeal ACE2 levels showed a protective effect against this outcome (adjOR = 0.30; 95% CI 0.09-0.91), while TMPRSS2/ACE2 ratio was associated with risk (adjOR = 4.28; 95% CI 1.36-13.48). On stepwise regression, TMPRSS2/ACE2 ratio outperformed ACE2 to model COVID-19 severity. When nasopharyngeal swabs were compared to bronchoalveolar lavages in an independent cohort of COVID-19 patients under mechanical ventilation, similar expression levels of these genes were observed. These data suggest nasopharyngeal TMPRSS2/ACE2 as a promising candidate for further prediction models on COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Respiratory Distress Syndrome/genetics , Serine Endopeptidases/genetics , Adult , Aged , COVID-19/complications , COVID-19/diagnosis , COVID-19/therapy , Case-Control Studies , Down-Regulation , Female , Humans , Male , Middle Aged , Nasopharynx/metabolism , RNA, Messenger/genetics , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Up-Regulation
10.
PLoS One ; 15(12): e0243597, 2020.
Article in English | MEDLINE | ID: covidwho-967413

ABSTRACT

OBJECTIVE: To investigate the relationship between viral load and secondary transmission in novel coronavirus disease 2019 (COVID-19). METHODS: Epidemiological and clinical data were obtained from immunocompetent laboratory-confirmed patients with COVID-19 who were admitted to and/or from whom viral loads were measured at Toyama University Hospital. Using a case-control approach, index patients who transmitted the disease to at least one other patient were analysed as "cases" (index patients) compared with patients who were not the cause of secondary transmission (non-index patients, analysed as "controls"). The viral load time courses were assessed between the index and non-index symptomatic patients using non-linear regression employing a standard one-phase decay model. RESULTS: In total, 28 patients were included in the analysis. Median viral load at the initial sample collection was significantly higher in symptomatic than in asymptomatic patients and in adults than in children. Among symptomatic patients (n = 18), non-linear regression models showed that the estimated viral load at onset was higher in the index than in the non-index patients (median [95% confidence interval]: 6.6 [5.2-8.2] vs. 3.1 [1.5-4.8] log copies/µL, respectively). In adult (symptomatic and asymptomatic) patients (n = 21), median viral load at the initial sample collection was significantly higher in the index than in the non-index patients (p = 0.015, 3.3 vs. 1.8 log copies/µL, respectively). CONCLUSIONS: High nasopharyngeal viral loads around onset may contribute to secondary transmission of COVID-19. Viral load may help provide a better understanding of why transmission is observed in some instances, but not in others, especially among household contacts.


Subject(s)
COVID-19 , Models, Biological , Nasopharynx , SARS-CoV-2/metabolism , Viral Load , Adolescent , Adult , Aged , COVID-19/metabolism , COVID-19/transmission , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Nasopharynx/metabolism , Nasopharynx/virology
SELECTION OF CITATIONS
SEARCH DETAIL